Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomed Pharmacother ; 137: 111313, 2021 May.
Article in English | MEDLINE | ID: covidwho-1062248

ABSTRACT

The SARS-CoV-2 outbreak and pandemic that began near the end of 2019 has posed a challenge to global health. At present, many candidate small-molecule therapeutics have been developed that can inhibit both the infection and replication of SARS-CoV-2 and even potentially relieve cytokine storms and other related complications. Meanwhile, host-targeted drugs that inhibit cellular transmembrane serine protease (TMPRSS2) can prevent SARS-CoV-2 from entering cells, and its combination with chloroquine and dihydroorotate dehydrogenase (DHODH) inhibitors can limit the spread of SARS-CoV-2 and reduce the morbidity and mortality of patients with COVID-19. The present article provides an overview of these small-molecule therapeutics based on insights from medicinal chemistry research and focuses on RNA-dependent RNA polymerase (RdRp) inhibitors, such as the nucleoside analogues remdesivir, favipiravir and ribavirin. This review also covers inhibitors of 3C-like protease (3CLpro), papain-like protease (PLpro) and other potentially innovative active ingredient molecules, describing their potential targets, activities, clinical status and side effects.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Molecular Targeted Therapy/methods , SARS-CoV-2 , Antiviral Agents/classification , Antiviral Agents/pharmacology , COVID-19/metabolism , Enzyme Inhibitors/pharmacology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Therapies, Investigational
SELECTION OF CITATIONS
SEARCH DETAIL